取消
清空記錄
歷史記錄
清空記錄
歷史記錄
通過將大小鼠置于飲水飲食獎(jiǎng)勵(lì)和溫度或機(jī)械刺激的**情境當(dāng)中,觀察動(dòng)物行為反應(yīng),評(píng)估動(dòng)物三叉神經(jīng)疼痛程度。
口面部疼痛是臨床最常見的神經(jīng)疾病之一,常涉及三叉神經(jīng)特有的結(jié)構(gòu)和機(jī)制。目前,可用于口面部疼痛臨床前研究的方法很少,大都測量的是動(dòng)物非學(xué)習(xí)性行為,如退縮反射,而且沒有在同一實(shí)驗(yàn)中合并機(jī)械或熱刺激的平行測量方法。
Ugo Basile 口面部疼痛測試儀將高級(jí)中樞功能與口面?zhèn)Ω惺苷?,解決了口面部臨床前動(dòng)物研究的技術(shù)難點(diǎn),是測量大小鼠三叉神經(jīng)區(qū)域?qū)岽碳せ驒C(jī)械刺激敏感性的理想設(shè)備。
動(dòng)物在標(biāo)準(zhǔn)的活動(dòng)籠里接受訓(xùn)練和測試。在限制墻窗口處安裝刺激器、背面安裝舔食獎(jiǎng)勵(lì)瓶,大小鼠經(jīng)過誘導(dǎo)過敏的干預(yù)或**后,須接觸刺激器才能獲得食物獎(jiǎng)勵(lì),舔食持續(xù)時(shí)間和嘗試次數(shù)在很大程度上取決于施加的熱或機(jī)械刺激的強(qiáng)度,重復(fù)進(jìn)行試驗(yàn),確定**對喂養(yǎng)行為(獎(jiǎng)勵(lì))的影響。
優(yōu)勢特點(diǎn):
一、機(jī)械痛和熱痛方法互補(bǔ),測試更**
熱刺激器或機(jī)械刺激器可安裝在限制墻上,部件更換便捷。熱刺激器依靠金屬環(huán)路和循環(huán)水浴,其溫度可以從環(huán)境溫度調(diào)節(jié)到70℃,以達(dá)到熱傷害感受閾值。
機(jī)械刺激器為多根細(xì)金屬針主要構(gòu)成。配有3個(gè)型號(hào),每個(gè)型號(hào)都有不同數(shù)量的金屬針,可對動(dòng)物舔食時(shí)施加不同的力度,適應(yīng)多種動(dòng)物模型。
二、高通量實(shí)驗(yàn),軟硬件同步測量
可進(jìn)行高通量動(dòng)物實(shí)驗(yàn),多通道通道集成組件可通過計(jì)算機(jī)與4個(gè)通道的口面部疼痛測試儀連接,系統(tǒng)附帶的ORO軟件可以同時(shí)記錄多達(dá)16個(gè)籠子的數(shù)據(jù)并實(shí)時(shí)顯示。
三、紅外光自動(dòng)檢測,動(dòng)物無需剃毛
采用先進(jìn)紅外光傳感器,無需對動(dòng)物任何處理也可**檢測其口面穿過限制墻窗口的行為并計(jì)時(shí)。設(shè)備出廠已校準(zhǔn),后續(xù)使用中校準(zhǔn)簡易。
四、獎(jiǎng)賞-懲罰模式客觀評(píng)價(jià)疼痛表現(xiàn)
Ugo Basile 口面部疼痛測試儀以自我賞罰實(shí)驗(yàn)設(shè)計(jì)原理,允許動(dòng)物在接受獎(jiǎng)賞或逃避傷害性刺激間做出選擇,與誘發(fā)疼痛反應(yīng)測試方法相比更為客觀,更能反映動(dòng)物高級(jí)中樞對傷害性刺激處理后的表現(xiàn)。
應(yīng)用領(lǐng)域:
口面部疼痛測試儀可應(yīng)用于口面部疼痛臨床前研究、三叉神經(jīng)結(jié)構(gòu)和機(jī)制研究、面部疼痛過敏測試與藥物**、****損傷和分子研究等。
型號(hào)規(guī)格:
31300 | 單通道大鼠測試系統(tǒng) |
31320 | 雙通道大鼠測試系統(tǒng) |
31340 | 四通道大鼠測試系統(tǒng) |
31300-323 | 小鼠機(jī)械和熱刺激器(為大鼠測試系統(tǒng)選配) |
31303 | 單通道小鼠測試系統(tǒng) |
參考文獻(xiàn):
1.Capsoni, Simona et al. “The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.” Brain : a journal of neurology vol. 140,1 (2017): 201-217. doi:10.1093/brain/aww271
2.Zhang, Yuan et al. “Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity.” Theranostics vol. 11,19 9342-9357. 9 Sep. 2021, doi:10.7150/thno.62255
3.Zhang, Qian et al. “Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice.” Journal of neuroinflammation vol. 13,1 183. 11 Jul. 2016, doi:10.1186/s12974-016-0652-1
4.De Caro, Carmen et al. “Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat.” British journal of pharmacology vol. 175,10 (2018): 1691-1706. doi:10.1111/bph.14177
5.Mo, Si-Yi et al. “Neuronal activities in the rostral ventromedial medulla associated with experimental occlusal interference-induced orofacial hyperalgesia.” The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 42,27 5314–5329. 3 Jun. 2022, doi:10.1523/JNEUROSCI.0008-22.2022
6.Kanda, Hirosato et al. “Kv4.3 Channel Dysfunction Contributes to Trigeminal Neuropathic Pain Manifested with Orofacial Cold Hypersensitivity in Rats.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,10 (2021): 2091-2105. doi:10.1523/JNEUROSCI.2036-20.2021
7.Pineda-Farias, Jorge Baruch et al. “Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,43 (2021): 8991-9007. doi:10.1523/JNEUROSCI.0547-21.2021
8.Pineda-Farias, Jorge Baruch et al. “Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,43 (2021): 8991-9007. doi:10.1523/JNEUROSCI.0547-21.2021
9.De Caro, Carmen et al. “Characterization of New TRPM8 Modulators in Pain Perception.” International journal of molecular sciences vol. 20,22 5544. 7 Nov. 2019, doi:10.3390/ijms20225544
10.Tavares-Ferreira, Diana et al. “Correlation of miRNA expression with intensity of neuropathic pain in man.” Molecular pain vol. 15 (2019): 1744806919860323. doi:10.1177/1744806919860323
通過將大小鼠置于飲水飲食獎(jiǎng)勵(lì)和溫度或機(jī)械刺激的**情境當(dāng)中,觀察動(dòng)物行為反應(yīng),評(píng)估動(dòng)物三叉神經(jīng)疼痛程度。
口面部疼痛是臨床最常見的神經(jīng)疾病之一,常涉及三叉神經(jīng)特有的結(jié)構(gòu)和機(jī)制。目前,可用于口面部疼痛臨床前研究的方法很少,大都測量的是動(dòng)物非學(xué)習(xí)性行為,如退縮反射,而且沒有在同一實(shí)驗(yàn)中合并機(jī)械或熱刺激的平行測量方法。
Ugo Basile 口面部疼痛測試儀將高級(jí)中樞功能與口面?zhèn)Ω惺苷?,解決了口面部臨床前動(dòng)物研究的技術(shù)難點(diǎn),是測量大小鼠三叉神經(jīng)區(qū)域?qū)岽碳せ驒C(jī)械刺激敏感性的理想設(shè)備。
動(dòng)物在標(biāo)準(zhǔn)的活動(dòng)籠里接受訓(xùn)練和測試。在限制墻窗口處安裝刺激器、背面安裝舔食獎(jiǎng)勵(lì)瓶,大小鼠經(jīng)過誘導(dǎo)過敏的干預(yù)或**后,須接觸刺激器才能獲得食物獎(jiǎng)勵(lì),舔食持續(xù)時(shí)間和嘗試次數(shù)在很大程度上取決于施加的熱或機(jī)械刺激的強(qiáng)度,重復(fù)進(jìn)行試驗(yàn),確定**對喂養(yǎng)行為(獎(jiǎng)勵(lì))的影響。
優(yōu)勢特點(diǎn):
一、機(jī)械痛和熱痛方法互補(bǔ),測試更**
熱刺激器或機(jī)械刺激器可安裝在限制墻上,部件更換便捷。熱刺激器依靠金屬環(huán)路和循環(huán)水浴,其溫度可以從環(huán)境溫度調(diào)節(jié)到70℃,以達(dá)到熱傷害感受閾值。
機(jī)械刺激器為多根細(xì)金屬針主要構(gòu)成。配有3個(gè)型號(hào),每個(gè)型號(hào)都有不同數(shù)量的金屬針,可對動(dòng)物舔食時(shí)施加不同的力度,適應(yīng)多種動(dòng)物模型。
二、高通量實(shí)驗(yàn),軟硬件同步測量
可進(jìn)行高通量動(dòng)物實(shí)驗(yàn),多通道通道集成組件可通過計(jì)算機(jī)與4個(gè)通道的口面部疼痛測試儀連接,系統(tǒng)附帶的ORO軟件可以同時(shí)記錄多達(dá)16個(gè)籠子的數(shù)據(jù)并實(shí)時(shí)顯示。
三、紅外光自動(dòng)檢測,動(dòng)物無需剃毛
采用先進(jìn)紅外光傳感器,無需對動(dòng)物任何處理也可**檢測其口面穿過限制墻窗口的行為并計(jì)時(shí)。設(shè)備出廠已校準(zhǔn),后續(xù)使用中校準(zhǔn)簡易。
四、獎(jiǎng)賞-懲罰模式客觀評(píng)價(jià)疼痛表現(xiàn)
Ugo Basile 口面部疼痛測試儀以自我賞罰實(shí)驗(yàn)設(shè)計(jì)原理,允許動(dòng)物在接受獎(jiǎng)賞或逃避傷害性刺激間做出選擇,與誘發(fā)疼痛反應(yīng)測試方法相比更為客觀,更能反映動(dòng)物高級(jí)中樞對傷害性刺激處理后的表現(xiàn)。
應(yīng)用領(lǐng)域:
口面部疼痛測試儀可應(yīng)用于口面部疼痛臨床前研究、三叉神經(jīng)結(jié)構(gòu)和機(jī)制研究、面部疼痛過敏測試與藥物**、****損傷和分子研究等。
型號(hào)規(guī)格:
31300 | 單通道大鼠測試系統(tǒng) |
31320 | 雙通道大鼠測試系統(tǒng) |
31340 | 四通道大鼠測試系統(tǒng) |
31300-323 | 小鼠機(jī)械和熱刺激器(為大鼠測試系統(tǒng)選配) |
31303 | 單通道小鼠測試系統(tǒng) |
參考文獻(xiàn):
1.Capsoni, Simona et al. “The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.” Brain : a journal of neurology vol. 140,1 (2017): 201-217. doi:10.1093/brain/aww271
2.Zhang, Yuan et al. “Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity.” Theranostics vol. 11,19 9342-9357. 9 Sep. 2021, doi:10.7150/thno.62255
3.Zhang, Qian et al. “Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice.” Journal of neuroinflammation vol. 13,1 183. 11 Jul. 2016, doi:10.1186/s12974-016-0652-1
4.De Caro, Carmen et al. “Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat.” British journal of pharmacology vol. 175,10 (2018): 1691-1706. doi:10.1111/bph.14177
5.Mo, Si-Yi et al. “Neuronal activities in the rostral ventromedial medulla associated with experimental occlusal interference-induced orofacial hyperalgesia.” The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 42,27 5314–5329. 3 Jun. 2022, doi:10.1523/JNEUROSCI.0008-22.2022
6.Kanda, Hirosato et al. “Kv4.3 Channel Dysfunction Contributes to Trigeminal Neuropathic Pain Manifested with Orofacial Cold Hypersensitivity in Rats.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,10 (2021): 2091-2105. doi:10.1523/JNEUROSCI.2036-20.2021
7.Pineda-Farias, Jorge Baruch et al. “Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,43 (2021): 8991-9007. doi:10.1523/JNEUROSCI.0547-21.2021
8.Pineda-Farias, Jorge Baruch et al. “Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 41,43 (2021): 8991-9007. doi:10.1523/JNEUROSCI.0547-21.2021
9.De Caro, Carmen et al. “Characterization of New TRPM8 Modulators in Pain Perception.” International journal of molecular sciences vol. 20,22 5544. 7 Nov. 2019, doi:10.3390/ijms20225544
10.Tavares-Ferreira, Diana et al. “Correlation of miRNA expression with intensity of neuropathic pain in man.” Molecular pain vol. 15 (2019): 1744806919860323. doi:10.1177/1744806919860323