取消
清空記錄
歷史記錄
清空記錄
歷史記錄
大鼠、小鼠睡眠剝奪儀是一款不需要對動(dòng)物進(jìn)行訓(xùn)練,以溫和的方式對動(dòng)物進(jìn)行睡眠限制的儀器。 參數(shù)設(shè)定完成后,不需要人為的干預(yù)即可對大鼠或小鼠進(jìn)行睡眠剝奪的實(shí)驗(yàn)。可用于睡眠研究、時(shí)差研究和間斷性睡眠模型模擬。
產(chǎn)品特點(diǎn):
· 具有四種工作模式:常開、定時(shí)、間歇、正反轉(zhuǎn);
· 轉(zhuǎn)棒轉(zhuǎn)動(dòng)溫和,不會(huì)對動(dòng)物造成任何機(jī)械損傷;
· 定時(shí)模式可設(shè)置干擾棒轉(zhuǎn)動(dòng)的時(shí)間;
· 間歇模式可分別調(diào)節(jié)轉(zhuǎn)動(dòng)時(shí)間和停止時(shí)間;
· 正反轉(zhuǎn)模式,可以定時(shí)設(shè)置干擾棒的運(yùn)轉(zhuǎn)方向;
· 轉(zhuǎn)棒高度可調(diào),減少墊料的影響;
· 根據(jù)實(shí)驗(yàn)需求,選配大鼠型、小鼠型活動(dòng)籠;
· 大鼠鼠籠高度 17cm,小鼠鼠籠高度 10cm;
· 我們也可以提供定制化改進(jìn)服務(wù);
型號(hào):YAN-239
可根據(jù)需要,選擇水槽式睡眠剝奪箱:
型號(hào):SY-M3016 小鼠睡眠剝奪水槽
多種型號(hào)可供選擇:
· SY-M3006,小鼠,6個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3008,小鼠,8個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3016,小鼠,16個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3024,小鼠,24個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-R3006,大鼠,6個(gè)大鼠平臺(tái),帶食槽隔網(wǎng)
· SY-R3012,大鼠,12個(gè)大鼠平臺(tái),帶食槽隔網(wǎng)
備注:客戶可自備水瓶;也可根據(jù)客戶需求定制,更多信息,敬請來電咨詢
小鼠的水槽式睡眠和疲勞剝奪正在進(jìn)行中
還可根據(jù)需要,選擇腦電反饋型睡眠剝奪儀
可以通過 EEG/EMG 腦電肌電系統(tǒng)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)來進(jìn)行睡眠剝奪,系統(tǒng)可以設(shè)置好動(dòng)物的睡眠狀態(tài),當(dāng)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)與預(yù)設(shè)置的睡眠狀態(tài)匹配或相似時(shí),系統(tǒng)控制擊打棒轉(zhuǎn)動(dòng);
由電腦和控制器觸屏控制;
系統(tǒng)根據(jù)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)控制擊打棒,擊打棒會(huì)以 5-15 RPM 的速度轉(zhuǎn)動(dòng),可以通過程序編制改變方向,以減少睡眠剝奪的動(dòng)物對環(huán)境的適應(yīng);
系統(tǒng)提供食物、水和睡眠場所,動(dòng)物籠分大鼠籠和小鼠籠;
部分參考文獻(xiàn):
1. Cordeira, J., Kolluru, S.S., Rosenblatt, H., Kry, J., Strecker, R.E., McCarlet, R.W. (2017). Learning and memory are impaired in the object recognition
task during metestrus/diestrus and after sleep deprivation. Behavioural Brain Research, 339, 124-129. doi: 10.1016/j.bbr.2017.11.033
2. Hines, D.J., Schmitt, L.I., Hines, R.M., Moss, S.J., & Haydon, P.G. (2013). Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Translational Psychiatry, 3, e212. doi: 10.1038/tp.2012.136
3. Lee, D., Lee, S., & Sohn, D. (2016). MP86-19 effect of sleep deprivation on hormonal axis and erectile function. Journal of Urology, 195(4), e1113. doi:10.1016/j.juro.2016.02.2327
4. Lee, D.S., Sohn, D.W., Yoon, B.I., & Yoo, J.M. (2017). 383 effect of sleep deprivation on hormonal axis and erectile function. Journal of Sexual Medicine, 14(1), S113-S114. doi: 10.1016/j.jsxm.2016.11.264
5. Naidoo, N., Davis, J.G., Zhu, J., Yabumoto, M., Singletary, K., Brown, M., … & Baur, J.A. (2014). Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell, 13(1), 131-141. doi: 10.1111/acel.12158
6. Schmidt, M.A. & Wisor, J.P. (2012). Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence. Neuroscience Letters, 513(2), 209-213. doi: 10.1016/j.neulet.2012.02.040
7. Ward, C.P., Wooden, J.I., & Kieltyka, R. (2017). Effects of sleep deprivation on spatial learning and memory in juvenile and young adult rats. Psychology & Neuroscience, 10(1), 109-116. doi: 10.1037/pne0000075
8. Wooden, J., Pido, J., Mathews, H., Kieltyka, R., Montemayor, B., & Ward, C. (2014). Sleep deprivation impairs recall of social transmission of food preference in rats. Nature and Science of Sleep, 2014(6), 129-135. doi: 10.2147/NSS.S68611
9. Duncan, M. J., L. E. Guerriero, K. Kohler, L. E. Beechem, B. D. Gillis, F. Salisbury, C. Wessel, J. Wang, S. Sunderam, A. D. Bachstetter, B. F. O’Hara and M. P. Murphy, 2022. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Neuroscience 481: 111-122.
10. Robinson-Junker, A., O’Hara, B., Durkes, A., Gaskill, B., 2019. Sleeping through anything: The effects of unpredictable disruptions on mouse sleep, healing, and affect. PloS one 14, e0210620.
大鼠、小鼠睡眠剝奪儀是一款不需要對動(dòng)物進(jìn)行訓(xùn)練,以溫和的方式對動(dòng)物進(jìn)行睡眠限制的儀器。 參數(shù)設(shè)定完成后,不需要人為的干預(yù)即可對大鼠或小鼠進(jìn)行睡眠剝奪的實(shí)驗(yàn)。可用于睡眠研究、時(shí)差研究和間斷性睡眠模型模擬。
產(chǎn)品特點(diǎn):
· 具有四種工作模式:常開、定時(shí)、間歇、正反轉(zhuǎn);
· 轉(zhuǎn)棒轉(zhuǎn)動(dòng)溫和,不會(huì)對動(dòng)物造成任何機(jī)械損傷;
· 定時(shí)模式可設(shè)置干擾棒轉(zhuǎn)動(dòng)的時(shí)間;
· 間歇模式可分別調(diào)節(jié)轉(zhuǎn)動(dòng)時(shí)間和停止時(shí)間;
· 正反轉(zhuǎn)模式,可以定時(shí)設(shè)置干擾棒的運(yùn)轉(zhuǎn)方向;
· 轉(zhuǎn)棒高度可調(diào),減少墊料的影響;
· 根據(jù)實(shí)驗(yàn)需求,選配大鼠型、小鼠型活動(dòng)籠;
· 大鼠鼠籠高度 17cm,小鼠鼠籠高度 10cm;
· 我們也可以提供定制化改進(jìn)服務(wù);
型號(hào):YAN-239
可根據(jù)需要,選擇水槽式睡眠剝奪箱:
型號(hào):SY-M3016 小鼠睡眠剝奪水槽
多種型號(hào)可供選擇:
· SY-M3006,小鼠,6個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3008,小鼠,8個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3016,小鼠,16個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-M3024,小鼠,24個(gè)小鼠平臺(tái),帶食槽隔網(wǎng)
· SY-R3006,大鼠,6個(gè)大鼠平臺(tái),帶食槽隔網(wǎng)
· SY-R3012,大鼠,12個(gè)大鼠平臺(tái),帶食槽隔網(wǎng)
備注:客戶可自備水瓶;也可根據(jù)客戶需求定制,更多信息,敬請來電咨詢
小鼠的水槽式睡眠和疲勞剝奪正在進(jìn)行中
還可根據(jù)需要,選擇腦電反饋型睡眠剝奪儀
可以通過 EEG/EMG 腦電肌電系統(tǒng)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)來進(jìn)行睡眠剝奪,系統(tǒng)可以設(shè)置好動(dòng)物的睡眠狀態(tài),當(dāng)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)與預(yù)設(shè)置的睡眠狀態(tài)匹配或相似時(shí),系統(tǒng)控制擊打棒轉(zhuǎn)動(dòng);
由電腦和控制器觸屏控制;
系統(tǒng)根據(jù)實(shí)時(shí)監(jiān)測的腦電肌電信號(hào)控制擊打棒,擊打棒會(huì)以 5-15 RPM 的速度轉(zhuǎn)動(dòng),可以通過程序編制改變方向,以減少睡眠剝奪的動(dòng)物對環(huán)境的適應(yīng);
系統(tǒng)提供食物、水和睡眠場所,動(dòng)物籠分大鼠籠和小鼠籠;
部分參考文獻(xiàn):
1. Cordeira, J., Kolluru, S.S., Rosenblatt, H., Kry, J., Strecker, R.E., McCarlet, R.W. (2017). Learning and memory are impaired in the object recognition
task during metestrus/diestrus and after sleep deprivation. Behavioural Brain Research, 339, 124-129. doi: 10.1016/j.bbr.2017.11.033
2. Hines, D.J., Schmitt, L.I., Hines, R.M., Moss, S.J., & Haydon, P.G. (2013). Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Translational Psychiatry, 3, e212. doi: 10.1038/tp.2012.136
3. Lee, D., Lee, S., & Sohn, D. (2016). MP86-19 effect of sleep deprivation on hormonal axis and erectile function. Journal of Urology, 195(4), e1113. doi:10.1016/j.juro.2016.02.2327
4. Lee, D.S., Sohn, D.W., Yoon, B.I., & Yoo, J.M. (2017). 383 effect of sleep deprivation on hormonal axis and erectile function. Journal of Sexual Medicine, 14(1), S113-S114. doi: 10.1016/j.jsxm.2016.11.264
5. Naidoo, N., Davis, J.G., Zhu, J., Yabumoto, M., Singletary, K., Brown, M., … & Baur, J.A. (2014). Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell, 13(1), 131-141. doi: 10.1111/acel.12158
6. Schmidt, M.A. & Wisor, J.P. (2012). Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence. Neuroscience Letters, 513(2), 209-213. doi: 10.1016/j.neulet.2012.02.040
7. Ward, C.P., Wooden, J.I., & Kieltyka, R. (2017). Effects of sleep deprivation on spatial learning and memory in juvenile and young adult rats. Psychology & Neuroscience, 10(1), 109-116. doi: 10.1037/pne0000075
8. Wooden, J., Pido, J., Mathews, H., Kieltyka, R., Montemayor, B., & Ward, C. (2014). Sleep deprivation impairs recall of social transmission of food preference in rats. Nature and Science of Sleep, 2014(6), 129-135. doi: 10.2147/NSS.S68611
9. Duncan, M. J., L. E. Guerriero, K. Kohler, L. E. Beechem, B. D. Gillis, F. Salisbury, C. Wessel, J. Wang, S. Sunderam, A. D. Bachstetter, B. F. O’Hara and M. P. Murphy, 2022. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Neuroscience 481: 111-122.
10. Robinson-Junker, A., O’Hara, B., Durkes, A., Gaskill, B., 2019. Sleeping through anything: The effects of unpredictable disruptions on mouse sleep, healing, and affect. PloS one 14, e0210620.