取消
清空記錄
歷史記錄
清空記錄
歷史記錄
大鼠、小鼠睡眠剝奪儀是一款不需要對動物進行訓練,以溫和的方式對動物進行睡眠限制的儀器。 參數設定完成后,不需要人為的干預即可對大鼠或小鼠進行睡眠剝奪的實驗。可用于睡眠研究、時差研究和間斷性睡眠模型模擬。
產品特點:
· 具有四種工作模式:常開、定時、間歇、正反轉;
· 轉棒轉動溫和,不會對動物造成任何機械損傷;
· 定時模式可設置干擾棒轉動的時間;
· 間歇模式可分別調節轉動時間和停止時間;
· 正反轉模式,可以定時設置干擾棒的運轉方向;
· 轉棒高度可調,減少墊料的影響;
· 根據實驗需求,選配大鼠型、小鼠型活動籠;
· 大鼠鼠籠高度 17cm,小鼠鼠籠高度 10cm;
· 我們也可以提供定制化改進服務;
型號:YAN-239
可根據需要,選擇水槽式睡眠剝奪箱:
型號:SY-M3016 小鼠睡眠剝奪水槽
多種型號可供選擇:
· SY-M3006,小鼠,6個小鼠平臺,帶食槽隔網
· SY-M3008,小鼠,8個小鼠平臺,帶食槽隔網
· SY-M3016,小鼠,16個小鼠平臺,帶食槽隔網
· SY-M3024,小鼠,24個小鼠平臺,帶食槽隔網
· SY-R3006,大鼠,6個大鼠平臺,帶食槽隔網
· SY-R3012,大鼠,12個大鼠平臺,帶食槽隔網
備注:客戶可自備水瓶;也可根據客戶需求定制,更多信息,敬請來電咨詢
小鼠的水槽式睡眠和疲勞剝奪正在進行中
還可根據需要,選擇腦電反饋型睡眠剝奪儀
可以通過 EEG/EMG 腦電肌電系統實時監測的腦電肌電信號來進行睡眠剝奪,系統可以設置好動物的睡眠狀態,當實時監測的腦電肌電信號與預設置的睡眠狀態匹配或相似時,系統控制擊打棒轉動;
由電腦和控制器觸屏控制;
系統根據實時監測的腦電肌電信號控制擊打棒,擊打棒會以 5-15 RPM 的速度轉動,可以通過程序編制改變方向,以減少睡眠剝奪的動物對環境的適應;
系統提供食物、水和睡眠場所,動物籠分大鼠籠和小鼠籠;
部分參考文獻:
1. Cordeira, J., Kolluru, S.S., Rosenblatt, H., Kry, J., Strecker, R.E., McCarlet, R.W. (2017). Learning and memory are impaired in the object recognition
task during metestrus/diestrus and after sleep deprivation. Behavioural Brain Research, 339, 124-129. doi: 10.1016/j.bbr.2017.11.033
2. Hines, D.J., Schmitt, L.I., Hines, R.M., Moss, S.J., & Haydon, P.G. (2013). Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Translational Psychiatry, 3, e212. doi: 10.1038/tp.2012.136
3. Lee, D., Lee, S., & Sohn, D. (2016). MP86-19 effect of sleep deprivation on hormonal axis and erectile function. Journal of Urology, 195(4), e1113. doi:10.1016/j.juro.2016.02.2327
4. Lee, D.S., Sohn, D.W., Yoon, B.I., & Yoo, J.M. (2017). 383 effect of sleep deprivation on hormonal axis and erectile function. Journal of Sexual Medicine, 14(1), S113-S114. doi: 10.1016/j.jsxm.2016.11.264
5. Naidoo, N., Davis, J.G., Zhu, J., Yabumoto, M., Singletary, K., Brown, M., … & Baur, J.A. (2014). Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell, 13(1), 131-141. doi: 10.1111/acel.12158
6. Schmidt, M.A. & Wisor, J.P. (2012). Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence. Neuroscience Letters, 513(2), 209-213. doi: 10.1016/j.neulet.2012.02.040
7. Ward, C.P., Wooden, J.I., & Kieltyka, R. (2017). Effects of sleep deprivation on spatial learning and memory in juvenile and young adult rats. Psychology & Neuroscience, 10(1), 109-116. doi: 10.1037/pne0000075
8. Wooden, J., Pido, J., Mathews, H., Kieltyka, R., Montemayor, B., & Ward, C. (2014). Sleep deprivation impairs recall of social transmission of food preference in rats. Nature and Science of Sleep, 2014(6), 129-135. doi: 10.2147/NSS.S68611
9. Duncan, M. J., L. E. Guerriero, K. Kohler, L. E. Beechem, B. D. Gillis, F. Salisbury, C. Wessel, J. Wang, S. Sunderam, A. D. Bachstetter, B. F. O’Hara and M. P. Murphy, 2022. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Neuroscience 481: 111-122.
10. Robinson-Junker, A., O’Hara, B., Durkes, A., Gaskill, B., 2019. Sleeping through anything: The effects of unpredictable disruptions on mouse sleep, healing, and affect. PloS one 14, e0210620.
大鼠、小鼠睡眠剝奪儀是一款不需要對動物進行訓練,以溫和的方式對動物進行睡眠限制的儀器。 參數設定完成后,不需要人為的干預即可對大鼠或小鼠進行睡眠剝奪的實驗。可用于睡眠研究、時差研究和間斷性睡眠模型模擬。
產品特點:
· 具有四種工作模式:常開、定時、間歇、正反轉;
· 轉棒轉動溫和,不會對動物造成任何機械損傷;
· 定時模式可設置干擾棒轉動的時間;
· 間歇模式可分別調節轉動時間和停止時間;
· 正反轉模式,可以定時設置干擾棒的運轉方向;
· 轉棒高度可調,減少墊料的影響;
· 根據實驗需求,選配大鼠型、小鼠型活動籠;
· 大鼠鼠籠高度 17cm,小鼠鼠籠高度 10cm;
· 我們也可以提供定制化改進服務;
型號:YAN-239
可根據需要,選擇水槽式睡眠剝奪箱:
型號:SY-M3016 小鼠睡眠剝奪水槽
多種型號可供選擇:
· SY-M3006,小鼠,6個小鼠平臺,帶食槽隔網
· SY-M3008,小鼠,8個小鼠平臺,帶食槽隔網
· SY-M3016,小鼠,16個小鼠平臺,帶食槽隔網
· SY-M3024,小鼠,24個小鼠平臺,帶食槽隔網
· SY-R3006,大鼠,6個大鼠平臺,帶食槽隔網
· SY-R3012,大鼠,12個大鼠平臺,帶食槽隔網
備注:客戶可自備水瓶;也可根據客戶需求定制,更多信息,敬請來電咨詢
小鼠的水槽式睡眠和疲勞剝奪正在進行中
還可根據需要,選擇腦電反饋型睡眠剝奪儀
可以通過 EEG/EMG 腦電肌電系統實時監測的腦電肌電信號來進行睡眠剝奪,系統可以設置好動物的睡眠狀態,當實時監測的腦電肌電信號與預設置的睡眠狀態匹配或相似時,系統控制擊打棒轉動;
由電腦和控制器觸屏控制;
系統根據實時監測的腦電肌電信號控制擊打棒,擊打棒會以 5-15 RPM 的速度轉動,可以通過程序編制改變方向,以減少睡眠剝奪的動物對環境的適應;
系統提供食物、水和睡眠場所,動物籠分大鼠籠和小鼠籠;
部分參考文獻:
1. Cordeira, J., Kolluru, S.S., Rosenblatt, H., Kry, J., Strecker, R.E., McCarlet, R.W. (2017). Learning and memory are impaired in the object recognition
task during metestrus/diestrus and after sleep deprivation. Behavioural Brain Research, 339, 124-129. doi: 10.1016/j.bbr.2017.11.033
2. Hines, D.J., Schmitt, L.I., Hines, R.M., Moss, S.J., & Haydon, P.G. (2013). Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Translational Psychiatry, 3, e212. doi: 10.1038/tp.2012.136
3. Lee, D., Lee, S., & Sohn, D. (2016). MP86-19 effect of sleep deprivation on hormonal axis and erectile function. Journal of Urology, 195(4), e1113. doi:10.1016/j.juro.2016.02.2327
4. Lee, D.S., Sohn, D.W., Yoon, B.I., & Yoo, J.M. (2017). 383 effect of sleep deprivation on hormonal axis and erectile function. Journal of Sexual Medicine, 14(1), S113-S114. doi: 10.1016/j.jsxm.2016.11.264
5. Naidoo, N., Davis, J.G., Zhu, J., Yabumoto, M., Singletary, K., Brown, M., … & Baur, J.A. (2014). Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell, 13(1), 131-141. doi: 10.1111/acel.12158
6. Schmidt, M.A. & Wisor, J.P. (2012). Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence. Neuroscience Letters, 513(2), 209-213. doi: 10.1016/j.neulet.2012.02.040
7. Ward, C.P., Wooden, J.I., & Kieltyka, R. (2017). Effects of sleep deprivation on spatial learning and memory in juvenile and young adult rats. Psychology & Neuroscience, 10(1), 109-116. doi: 10.1037/pne0000075
8. Wooden, J., Pido, J., Mathews, H., Kieltyka, R., Montemayor, B., & Ward, C. (2014). Sleep deprivation impairs recall of social transmission of food preference in rats. Nature and Science of Sleep, 2014(6), 129-135. doi: 10.2147/NSS.S68611
9. Duncan, M. J., L. E. Guerriero, K. Kohler, L. E. Beechem, B. D. Gillis, F. Salisbury, C. Wessel, J. Wang, S. Sunderam, A. D. Bachstetter, B. F. O’Hara and M. P. Murphy, 2022. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Neuroscience 481: 111-122.
10. Robinson-Junker, A., O’Hara, B., Durkes, A., Gaskill, B., 2019. Sleeping through anything: The effects of unpredictable disruptions on mouse sleep, healing, and affect. PloS one 14, e0210620.