取消
清空記錄
歷史記錄
清空記錄
歷史記錄
傳統動物心電圖測量分析采用體表無創方式,雖操作簡單,但是存在測量位置影響大、測量精度不高等局限性,而心外膜表面電極測量心電圖操作極為復雜且創傷性大,實驗中較少采用。為解決這一難題,Scisence 提供微創的多電極電生理導管,獨特設計使研究者能夠對生物電在整個心臟的擴散過程進行更為深入的測量和分析。
電生理導管系統由八電極電生理導管、電極分配盒及第三方生物電放大器及刺激器組成。
工作原理:八電極電生理導管上的每對電極均受控于電極分配盒,電極分配盒通過 2mm 針式連接線與第三方生物電放大器或刺激器相連,通過生理記錄儀采集對應的電極對引導的電信號數據。八電極電生理導管可用于心臟起搏,電信號記錄,進而用于心臟電生理的各方面研究。
電生理導管系統特點
1. 微創八電極電生理導管,可監測心內各個部位的心電信號
2. 可同時引導心內 4 個不同部位的心電信號,可觀察心電信號的擴散過程
3. 同一根導管可同時用于采集信號和給予刺激
4. 小鼠 1.1F,電極間距 0.5mm;大鼠 1.9F,電極間距 1.0mm;導管電極間距可定制
5. 聚酰胺材料制作,生物相容性好,兼顧靈活性和剛性,光滑而便于插入
6. 電極分配盒控制每對電極,電極之間互不影響
7. 兼容多種第三方生物電放大器、刺激器、數據采集器,如美國 iWorx 的 iWire-BIOx、IX-RA-834 等
8. 動物實驗用,不能用于人體
LabScribe 心電分析模塊
1. 測量心電圖 R-R、PR、QT、TP、QR、QTc 間隔,QRS、T、P 波寬,P、Q、R、S、T 波幅以及 ST段抬高等數據;
2. 具有具體的分析模板,可準確描繪各波起點、波寬、波幅等;
3. 客戶可定制專門的 ECG 模板,以滿足自身特殊實驗的需要;
4. 可從 R-R 間期、心率、噪音和活動性等方面來劃定異常值,從而使分析更準確。
5. 可輕松提取源數據或平均數據作為圖片或文本導出;
6. 可選 ASCII 文本導入模塊將其他第三方設備采集的 ECG 數據導入本軟件進行分析;
LabScribe 進行心電分析
相關文獻:
Luo X, et. al. “MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.” J Clin Invest. 2013 May 1; 123(5): 1939-51
De Jong AM, et. al. “Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload.” PLoS One. 2013 Sep 6; 8(9): e72651
Guasch E, et. al. “Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model.” J Am Coll Cardiol. 2013 Jul 2;62(1):68-77
Cardin S, et. al. “Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure.” Circ Arrhythm Electrophysiol. 2012 Oct; 5(5): 1027-35
Iwasaki YK, et. al. “Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea.” Heart Rhythm. 2012 Sep; 9(9): 1409-16.e1
Jiao KL, et. al. “Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction.” J Cell Mol Med. 2012 Jun; 16(6): 1342-51
Zhou Y, et. al. “Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L).” Int J Biol Sci. 2012; 8(1): 150-8.
Benito B, et. al. “Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training.” Circulation. 2011 Jan 4; 123(1): 13-22
Prestia KA, et al. “Increased Cell-Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice.” Front Physiol. 2011 Jan 31; 2(1): 1-7
Aubin MC, et al. “A high-fat diet increases risk of ventricular arrhythmia in female rats: enhanced arrhythmic risk in the absence of obesity or hyperlipidemia.” J Appl Physiol. 2010 Feb; 108: 933-940
Lu Y, et al. “MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.” Circulation. 2010 Dec; 122(23): 2378-87
Mathur N, et al. “Sudden infant death syndrome in mice with an inherited mutation in RyR2.” Circ Arrhythm Electrophysiol. 2009 Dec; 2: 677-685
傳統動物心電圖測量分析采用體表無創方式,雖操作簡單,但是存在測量位置影響大、測量精度不高等局限性,而心外膜表面電極測量心電圖操作極為復雜且創傷性大,實驗中較少采用。為解決這一難題,Scisence 提供微創的多電極電生理導管,獨特設計使研究者能夠對生物電在整個心臟的擴散過程進行更為深入的測量和分析。
電生理導管系統由八電極電生理導管、電極分配盒及第三方生物電放大器及刺激器組成。
工作原理:八電極電生理導管上的每對電極均受控于電極分配盒,電極分配盒通過 2mm 針式連接線與第三方生物電放大器或刺激器相連,通過生理記錄儀采集對應的電極對引導的電信號數據。八電極電生理導管可用于心臟起搏,電信號記錄,進而用于心臟電生理的各方面研究。
電生理導管系統特點
1. 微創八電極電生理導管,可監測心內各個部位的心電信號
2. 可同時引導心內 4 個不同部位的心電信號,可觀察心電信號的擴散過程
3. 同一根導管可同時用于采集信號和給予刺激
4. 小鼠 1.1F,電極間距 0.5mm;大鼠 1.9F,電極間距 1.0mm;導管電極間距可定制
5. 聚酰胺材料制作,生物相容性好,兼顧靈活性和剛性,光滑而便于插入
6. 電極分配盒控制每對電極,電極之間互不影響
7. 兼容多種第三方生物電放大器、刺激器、數據采集器,如美國 iWorx 的 iWire-BIOx、IX-RA-834 等
8. 動物實驗用,不能用于人體
LabScribe 心電分析模塊
1. 測量心電圖 R-R、PR、QT、TP、QR、QTc 間隔,QRS、T、P 波寬,P、Q、R、S、T 波幅以及 ST段抬高等數據;
2. 具有具體的分析模板,可準確描繪各波起點、波寬、波幅等;
3. 客戶可定制專門的 ECG 模板,以滿足自身特殊實驗的需要;
4. 可從 R-R 間期、心率、噪音和活動性等方面來劃定異常值,從而使分析更準確。
5. 可輕松提取源數據或平均數據作為圖片或文本導出;
6. 可選 ASCII 文本導入模塊將其他第三方設備采集的 ECG 數據導入本軟件進行分析;
LabScribe 進行心電分析
相關文獻:
Luo X, et. al. “MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.” J Clin Invest. 2013 May 1; 123(5): 1939-51
De Jong AM, et. al. “Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload.” PLoS One. 2013 Sep 6; 8(9): e72651
Guasch E, et. al. “Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model.” J Am Coll Cardiol. 2013 Jul 2;62(1):68-77
Cardin S, et. al. “Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure.” Circ Arrhythm Electrophysiol. 2012 Oct; 5(5): 1027-35
Iwasaki YK, et. al. “Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea.” Heart Rhythm. 2012 Sep; 9(9): 1409-16.e1
Jiao KL, et. al. “Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction.” J Cell Mol Med. 2012 Jun; 16(6): 1342-51
Zhou Y, et. al. “Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L).” Int J Biol Sci. 2012; 8(1): 150-8.
Benito B, et. al. “Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training.” Circulation. 2011 Jan 4; 123(1): 13-22
Prestia KA, et al. “Increased Cell-Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice.” Front Physiol. 2011 Jan 31; 2(1): 1-7
Aubin MC, et al. “A high-fat diet increases risk of ventricular arrhythmia in female rats: enhanced arrhythmic risk in the absence of obesity or hyperlipidemia.” J Appl Physiol. 2010 Feb; 108: 933-940
Lu Y, et al. “MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.” Circulation. 2010 Dec; 122(23): 2378-87
Mathur N, et al. “Sudden infant death syndrome in mice with an inherited mutation in RyR2.” Circ Arrhythm Electrophysiol. 2009 Dec; 2: 677-685